Compiling and Running MetBroker
These notes explain how to run MetBroker on a server. They assume you know roughly how MetBroker works and are roughly familiar with running Java programs. If you don’t please consult documentation such as the MetBroker Programmers Guide.
Requirements

Required software

· A recent Java 2 Runtime Environment (1.3 or later)

· A license for PSEPro for Java – an object oriented database (not free)

· Various 3rd party libraries (all free)

Required hardware

· About 20 MB of disk space for everything

· An Internet connection with a fixed IP address so client applications can find MetBroker

· MetBroker runs faster on faster computers, but as it is usually bandwidth limited (connections to remote databases or to clients) it is not very important.

Firewalls

· Your firewall must allow client applications to connect to MetBroker using Java RMI. This involves firstly access to RMIRegistry on port 1099, and then some dynamic port allocation

Other Applications

· MetBroker needs to register itself with a copy of RMIRegistry running on the same computer – more on this later in this document.

· Recently we have begun to use ResourceServer to handle the task of internationalizing weather database names. MetBroker must connect to a running copy of ResourceServer when it starts, so you need to start ResourceServer before MetBroker

RMIRegistry

An instance of RMIRegistry must be running on the same machine as MetBroker. When it starts, MetBroker registers itself with this instance, using a string held as a constant RMINAME in the MetBroker RMI interface net.agmodel.weatherData.MetBroker.

Note that, to support dynamic class loading if required, RMIRegistry should be started in such a way that it cannot find any classes in its classpath. The java.rmi.server.codebase property should be the only mechanism that RMIRegistry can use to locate classes used in the interface.

If RMIRegistry is restarted, then MetBroker must also be restarted.

The Command Line
The command lines used to invoke MetBroker give a good idea of what files are required.

Windows

The following is a single, long command line normally stored in a batch file.

 “^” in Windows acts to continue the command line.

java –cp metbroker.jar;genericbroker.jar;resdata.jar;weatherdata.jar;^

persistutil.jar;serverutil.jar;^

pro.jar;tools.jar;^

pgjdbc2.jar;classes12.zip;DataGateway.zip;mm.mysql-2.0.2-bin.jar;^

soap.jar;mail.jar;activation.jar;jakarta-oro-2.0.1.jar ^

-Djava.rmi.server.codebase="file:///libMine/genericbroker/genericbroker.jar ^

file:///libMine/weatherdata/weatherdata.jar" ^

net.agmodel.metBroker.MetBrokerImpl
We can analyze this command line piece by piece:

java
runs the Java virtual machine on your computer, assuming the JVM is in your path somewhere

 –cp indicates that the next parameter is the Java class path

jars created at NARC and downloadable from www.agmodel.net
metbroker.jar
internal MetBroker classes not used in other applications, including the RMI skeleton and a copy of the stub class. (This jar file must precede weatherdata.jar in the class path)
genericbroker.jar
utility classes related to RMI-based brokers and servers

resdata.jar
classes MetBroker uses to interface with ResourceServer

weatherdata.jar
classes used for communication with metbroker
persistutil.jar
persistent versions of classes used with PSEPro to store metadata
serverutil.jar
utility classes for abstracting various JDBC drivers
jars provided by others
pro.jar
PSEPro classes (object-oriented database used to store metadata)
jars provided by others and required to link to various weather databases
pgjdbc2.jar
PostgreSQL JDBC driver
classes12.zip
Oracle JDBC driver

DataGateway.zip
Borland Data Gateway

mm.mysql-2.0.2-bin.jar
My SQL JDBC driver
soap.jar
Apache SOAP classes

mail.jar
used by Apache SOAP
activation.jar
used by Apache SOAP
jakarta-oro-2.0.1.jar
Regular expression matching for parsing some Web pages
-Djava.rmi.server.codebase="file:///libMine/genericbroker/genericbroker.jar ^

file:///libMine/weatherdata/weatherdata.jar" ^

Runtime parameter which is preferred way for RMIRegistry to locate classes used in remote interface (ie by client applications). Can also use http based URLs.

net.agmodel.metBroker.MetBrokerImpl
The main MetBroker internal class, responsible for reading configuration files and loading drivers.

Linux

Here, for comparison, is a command line used on a Linux machine

java \

 -Djava.rmi.server.codebase="http://mb2.dc.affrc.go.jp/~matthewl/weatherdata.jar http://mb2.dc.affrc.go.jp/~matthewl/genericbroker.jar" \

 -classpath .:metbroker.jar:genericbroker.jar:weatherdata.jar:\

resdata.jar:serverutil.jar:persistutil.jar:pro.jar:\

pgjdbc2.jar:classes12.zip:DataGateway.zip:mm.mysql-2.0.2-bin.jar:\

soap.jar:mail.jar:activation.jar:\

jakarta-oro-2.0.1.jar \

 net.agmodel.metBroker.MetBrokerImpl $1 2>&1 >> Brokerlog &

Configuration

MetBroker reads its configuration from a file called MetBrokerConfiguration.txt which should be in the same directory that MetBroker is started from. Here is the file, with additional comments
#Configuration file for MetBroker (read at startup)

#Must be tab delimited

#Any line beginning with # is regarded as a comment.

#Order of fields:

#sourceID in lower case - must match a resource name in ResourceServer

This id is used by client applications to refer to each database.

The id is made up by whoever writes the configuration file!
#NorthWest boundary latitude and longitude in degrees
#SouthEast boundary latitude and longitude in degrees

Use decimal notation, with latitudes south of the equator and longitudes west of Greenwich represented with negative numbers.

#PASSWORD, EMAIL or NOLOGIN (level of password protection on database)

#System user code

#System password

MetBroker passes these values to the database driver to use when retrieving metadata and or data.

#driver name - must be the name of a class in net.agmodel.metDriver #without the .class extension
#default time zone for this database
#offset for daily data (local time for daily summaries)

Use 0 for midnight-to-midnight data, 9 for 9am-to-9am...must be a number between 0 and 24.
#shortest data duration eg 15 minute (no "s" on minute)

The shortest interval between measurements in the database
#longest data duration eg 1 day

The longest interval between measurements in the database

#timeliness (eg 1 month) – currently operating stations are updated within a month of the data being collected

This is a measure of how “up to date” the database is. If MetBroker looks for recent data, and doesn’t find it, and the data it is looking for is older than this parameter, it assumes that station is no longer operational.

#update (optional)
true forces meta data for the database to be updated/reloaded, even if metadata is already present in the metadatabase.

hortplus
-33
165
-47
180
NOLOGIN
usernm1
passwd1
HortPlus
Pacific/Auckland
9
1 hour
1 day
2 year

amedas
44
122
23
146
NOLOGIN
usernm2
passwd2
Amedas
JST
0
1 hour
1 day
1 year

prefmetdb
35.7
140
35.5
140.2
NOLOGIN
usernm3
passwd3
PrefMetDB
JST
9
15 minute
1 hour
1 year

gaemn
35
-86
30
-81
NOLOGIN
usernm4
passwd4
GAEMNHTML
EST
0
1 day
1 day
1 month
…
Security Permissions

The RMI security manager, which MetBroker loads after it starts up, places similar restrictions on MetBroker to those the “sandbox” places on applets. MetBroker therefore needs to be granted permissions to, for example, make socket connections to remote databases, receive connections from client applications, and read and write the local database.

To understand Java’s security system the following link may be helpful:

http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html
Here is a typical MetBroker policy file:

grant codeBase "file:${user.home}/public_html/-" {

//Let MetBroker read these permissions to display

//debugging information when it starts

permission java.util.PropertyPermission "*","read";

// this is for PSEProj to access database files

 // and maybe lets MetBroker read the configuration file

permission java.io.FilePermission "*","read,write,delete";

//let servers connect to these databases:

permission java.net.SocketPermission "clidb.niwa.cri.nz","connect";

permission java.net.SocketPermission "db.cc.affrc.go.jp","connect";

...

permission java.net.SocketPermission "*","accept";

//allow client applications to connect

//above line added for Sun JRE 1.3.1 - not needed before

}
By default Java looks for a file named “.java.policy” in the user.home directory, which on Windows XP machines is in

Documents and Settings\username.
Note that the file name has a leading “.”. To save the file using Windows editors like Notepad you need to put double quotes around the file name eg “.java.policy” in order to save it.
PSEPro for Java
The current version of MetBroker internally uses an object oriented database system called PSEPro to store details about the weather stations and regions available on each database. PSEPro is a commercial software package from the ObjectVision division of Progress Software.

http://www.objectstore.net/products/pse_pro/pse_pro_java/index.ssp
Note that MetBroker could probably be re-written to use a different internal database. MetBroker currently stores quite detailed information about what is available from each weather station, including the weather elements, their resolution, and the period for which they are available. It updates this data based on the results of queries – for example if it queries for data which “should” be there and isn’t, it records this fact.
These data are stored in three files – metbroker.odb, metbroker.odf and metbroker.odt in the directory MetBroker is run from. PSEPro is a single-user, multithreaded database. In our case, MetBroker is the single user. PSEPro creates a locking directory in the working directory when is starts. This directory, metbroker.odx is normally deleted if applications close “nicely”, but MetBroker never shuts down nicely, so the directory is left behind. If MetBroker tries to start and this directory is present, PSEPro throws an exception. The simple solution is to delete it before MetBroker starts, and this is what the batch files that run MetBroker usually do.
Compiling MetBroker

MetBroker.jar is built in four main steps.

1. compile using javac.

2. run PSEPro post-processor

3. generate RMI stubs and skeletons

4. build the jar file

The step which may be unfamiliar is number 2, the need to run the PSEPro post-processor over all of the files that are either persistent, or that access persistent classes. PSEPro works by inserting additional statements into the standard Java class files to move data to and from disk.
PSEPro and some other jar files are stored under a separate directory \libOthers.

MetBroker and other jar files are stored under the directory \libMine

This batch file assumes the following subdirectory structure under \libMine\metbroker:

\src
MetBroker source code

\classes
compiled output

\classes\annotated
output of PSEPro post-processor

Here are the main lines from the batch file I use to build MetBroker.

set CLASSPATH=c:\libMine\metbroker\classes\annotated;^

c:\libMine\metbroker\classes;c:\libMine\resdata\resdata.jar;^

c:\libMine\weatherdata\weatherdata.jar;^

c:\libMine\genericbroker\genericbroker.jar;^

\libOthers\pseproj\pro.zip;c:\libOthers\pseproj\tools.zip;^

:\libOthers\OROMatcher;c:\libOthers\oracle\classes12.zip;^

libMine\serverutil\serverutil.jar;c:\libMine\persistutil\persistutil.jar;^

.\soap.jar

rem *** Compiling all the classes

cd src

javac -d ..\classes net\agmodel\metBroker*.java net\agmodel\metDriver*.java

rem ** Running the PSE postprocessor

cd ..\classes

call osjcfp.bat @..\mbcfpargs.txt

The @ symbol tells the PSEPro post-processor to take its parameters from the file mbcfpargs.txt. This file tells the post-processor while classes are themselves persistent (“persistcapable”), which classes need to access persistent classes (“persistaware”), and one class which just needs to be copied to the right place (“copyclass”).
The file is listed in Appendix 1.
rem *** Generating the RMI stubs and skeletons

rmic -sourcepath annotated\net\agmodel\metBroker ^

-d annotated ^

net.agmodel.metBroker.MetBrokerImpl

rem *** Building metbroker.jar

cd..

jar cvf metbroker.jar @jarmetbroker.txt
jarmetbroker.txt just contains these lines:

--
-C c:/libMine/metbroker/classes

net/agmodel/metDriver

-C c:/libOthers/OROMatcher

com

-C c:/libMine/metbroker/classes/annotated

net/agmodel/metBroker

--

Appendix 1
PSEPro PostProcessor Configuration (mbcfpargs.txt)

-dest annotated

-persistcapable

net.agmodel.metBroker.ServerStationImpl

net.agmodel.metBroker.RegionImpl

net.agmodel.metBroker.User

net.agmodel.metBroker.User$PasswordPair

net.agmodel.metBroker.MetCatalogSection

net.agmodel.metBroker.MetCatalogCard

net.agmodel.metBroker.MetCatalogPeriod

-persistaware

net.agmodel.metBroker.MetBrokerImpl

net.agmodel.metBroker.MetBrokerContext

net.agmodel.metBroker.MetSourceImpl

net.agmodel.metBroker.MetSourceImpl$1

net.agmodel.metBroker.MetSourceImpl$2

net.agmodel.metBroker.MetSourceImpl$3

net.agmodel.metBroker.MetSourceImpl$4

net.agmodel.metBroker.MetSourceImpl$5

net.agmodel.metBroker.MetSourceImpl$6

net.agmodel.metBroker.MetSourceImpl$7

net.agmodel.metBroker.MetSourceImpl$8

net.agmodel.metBroker.MetSourceImpl$9

net.agmodel.metBroker.MetSourceImpl$10

net.agmodel.metBroker.MetSourceImpl$11

net.agmodel.metBroker.MetSourceImpl$12

net.agmodel.metBroker.MetSourceImpl$13

net.agmodel.metBroker.MetSourceImpl$14

net.agmodel.metBroker.MetSourceImpl$15

net.agmodel.metBroker.MetSourceImpl$16

net.agmodel.metBroker.MetSourceImpl$ServiceWrapper

net.agmodel.metBroker.MetSourceImpl$MetSourceContext

-copyclass

net.agmodel.metBroker.SpatialMetDatabaseAccess

