
MetBroker Programmers Guide

Matthew Laurenson

National Agricultural Research Center

Tsukuba, Japan

January 25, 2001

Contents

Contents.. 2

1 MetBroker – Introduction ... 3

1.1 Introduction... 3

1.2 Why Focus on Weather Data? .. 4

1.3 MetBroker Overview .. 5

1.1.1 Basic structure ... 5

1.4 Applications Illustrating Data Access... 11

1.4.1 Single station... 11

1.4.2 Spatial access .. 19

1.4.3 Data Access Servlet... 19

1.5 Summary... 20

2 MetBroker – Internal Implementation... 21

2.1 Introduction... 21

2.2 Design ... 21

2.2.1 Unified Modeling Language and Object-Oriented Design.. 22

2.2.2 Overview... 23

2.2.3 WeatherData package – data handling classes .. 23

2.2.4 MetBroker package – metadata and connection management... 36

2.2.5 MetDriver package – database connectivity.. 43

2.2.6 MetBean package .. 44

2.2.7 HTTP Wrapper Servlet.. 47

2.3 Deployment... 48

2.3.1 Memory ... 48

2.3.2 Disk requirements ... 48

2.3.3 PSEPro .. 49

2.4 Summary... 51

References... 52

1 MetBroker – Introduction

This chapter is largely drawn from (Laurenson, 2002).

1.1 Introduction

Weather data are an important input to many agricultural models, both at an individual farm level and

at a region or catchment level. Many different organisations have created weather databases, reflecting

the importance of weather for agricultural decision making, but all the databases differ in structure and

access. Some attempts have been made to offer unified access to multiple weather databases, but these

have been in-house efforts that have not offered access to outside groups or applications, and their

promised results have yet to be delivered.

We believed that the mediator architecture offered the best way to provide consistent access to these

heterogeneous, autonomous databases. To confirm this we have developed an original mediator for

weather data, MetBroker, which for the first time provides applications with consistent access to

autonomous, heterogeneous weather databases. MetBroker currently provides access to twelve databases

in seven countries. Databases do not require any modification or additional software to be linked to the

system, and newly linked databases can immediately be used by MetBroker-linked applications.

DSS can now be readily tested and validated anywhere for which Internet-accessible weather data are

available. We have developed a number of applications that demonstrate this new capability. This

chapter focuses on MetBroker’s capabilities, using these demonstration applications to show how

MetBroker can be used by applications. How MetBroker works internally will be discussed in the

following chapter.

1.2 Why Focus on Weather Data?

Weather data have been used in agricultural models since the early 1970s and each new weather

database has used whichever storage mechanism seemed best at the time and whatever data structure

seemed best to the developer. The resulting diversity charts the development of data storage systems

from file-based through to relational database management systems (RDBMS) and is a testament to the

creativeness of many people. With the widespread availability of the Internet, these islands of

computing are now linked by a common highway, but not before speciation has occurred. Each island

now has its own resident database together with its set of closely coupled applications. In most cases

these applications cannot be run against other databases without significant modification. Software

developers who wish to use weather data from more than one database have a difficult task ahead of

them.

The weather data domain is a good choice for a first experimental broker for several reasons. Weather

data are a widely used, important input to agricultural DSS. Because of there dynamic nature most of

these DSS must frequently acquire updated weather data, so convenient data handling mechanisms are

important. There are many sources of weather data, including some that are freely accessible. Other

important kinds of data, such as price information, are more tightly controlled in comparison. The

volume of weather data required by DSS is sufficient to provide some performance challenges, but does

not overwhelm current bandwidth in the same way that, say, genomic data might. There is enough

diversity in the different weather elements to explore some issues of knowledge representation, without

having to deal with too many variables. The most distinctive characteristic of weather data is probably

its temporal variability and to a lesser extent its spatial variability. Other kinds of data, such as soil

properties or the susceptibility of pests to agrichemicals, vary more slowly. The techniques developed in

dealing with weather data are likely to be applicable to other domains, particularly those involving time-

series data such as price information.

1.3 MetBroker Overview

MetBroker uses a least-common-denominator approach, rather than trying to make the complete data

holdings of its component databases available. MetBroker focuses on providing agricultural DSS with

direct access to the kind of data that they require, which makes its task somewhat easier. In using a least

common denominator approach, MetBroker is trying to follow in the footsteps of systems such as

DSSAT, which achieved widespread uptake in part through careful definition and standardisation of the

minimum data set required to run the models.

1.1.1 Basic structure

Figure 1-1 shows the basic structure of MetBroker. MetBroker is written in Java and runs on a server

permanently connected to the Internet. Different kinds of applications on the left hand side of the

diagram use mechanisms provided by the client interface to access the collection of weather databases

on the right hand side of the diagram. Client applications communicate with the broker using Java RMI,

sometimes through an HTTP intermediary (similar to the use of HTTP in the NOAAServer version 2).

MetBroker connects to each database using a database-specific driver that hides the details of that

particular database’s structure.

Table 1-1 shows 12 databases accessible through MetBroker at the time of writing. These were

selected because they were accessible to the author via the Internet and representative of the range of

weather databases. Relational databases are generally accessed using Java Database Connectivity

(JDBC) drivers, and the file-based databases are accessed either through Web pages, or by direct access

to the files themselves. Note that even databases implemented with the same database management

system can use differing logical structures to store their data. For example, both the Japan Ministry of

Agriculture, Forestry, and Fisheries database of AMeDAS data (Japan MAFF, 1999) and the N.Z.

National Climate Database (Penney, 1997) use Oracle as their DBMS. The AMeDAS database, however,

stores all the stations’ data in one hourly and one daily table, whereas CliDB stores each element, or

related group of elements in a separate table.

For each database, MetBroker holds the bounds of the geographical region covered (Figure 1-2), the

period for which data is available, the database’s login requirements (password protected or publicly

accessible), and the mechanism to access it. A list of the weather stations in each database and any

regions within the database are also stored. MetBroker records each station’s location (Figure 1-2),

period of operation, the meteorological elements it records, and their temporal resolution. Figure 1-3

shows a typical situation, where stations record different elements at different times, and there are

sometimes several stations at the same location over time (e.g. A1 and A2) or stations that have shut

down (B). Database, region and station names can be stored in more than one language (e.g. Japanese

and English) and supplied to the client in their preferred language and encoding.

MetBroker receives requests from client software applications in a standard format. It first checks the

metadata described above to ensure that the requested data is available. It then retrieves the data using

the access mechanism appropriate for that particular database. The data is packaged into a standard

result object and returned to the calling application.

MetBroker

Japan

USA

New Zealand

Weather
Databases

Weather Browser

Agricultural Models

GIS

direct
access

virtual
station

spatial
access

Example
Applications

Intermediate
Layer

Metadata
database
drivers

client
interface

Figure 1-1 MetBroker’s major components (Laurenson et al., 2000)

Table 1-1 Databases accessible through MetBroker

Name No.

Stations

 Database
1

Resolut-ion2 URL/Reference

New Zealand National Climate Database (CliDB) 6547 Oracle 10 min – Monthly (Penney, 1997)

MAFF database of Automated Met. Data Acquisition System,

Japan (AMeDAS)

1479 Oracle Hourly – Daily http://www.kishou.go.jp

Wakayama Rainfall 137 PostgreSQL Hourly http://www.wakayama.go.jp

Public Agricultural Weather System, Washington State (PAWS) 60 MySQL 15 min – Daily http://index.prosser.wsu.edu

Georgia Ag. Environmental Monitoring Network (GAEMN) 39 File-based 15 min http://www.georgiaweather.net

Planteforsk, Norway 33 MySQL Hourly – Daily http://www.planteforsk.no

Florida Automated Weather Network (FAWN) 18 SQL Server 15 min http://fawn.ifas.ufl.edu

South African Sugar Association 13 File-based Daily http://www.sasa.org.za

Seoul National University, Korea 11 MiniSQL Hourly – Daily http://epilab.snu.ac.kr

Horticulture Research International, U.K. 2 Oracle Daily

Chiba Prefecture 1 PostgreSQL Hourly

Tottori Prefecture 1 PostgreSQL Hourly

8

1 Includes stations no longer operational

2 In some cases this resolution is not available through MetBroker.

http://index.prosser.wsu.edu/
http://www.georgiaweather.net/
http://fawn.ifas.ufl.edu/

Weather Stations

Latitude bounds

Longitude bounds

Coastline

C

A

B

Figure 1-2 MetBroker holds the geographical bounds of each database

9

time

Station A1 A2

 Station B

Station C1 Station C2

Rain
Air temperature
Wind

...

...

Figure 1-3 Information recorded for each station by MetBroker

10

1.4 Applications Illustrating Data Access

Client applications ask for data with two kinds of request. In both cases the client application specifies

which data elements are required, the period for which data is required, the data resolution required (e.g.

daily), and whether MetBroker can summarise shorter resolution data in order to fulfil the request. In the

first kind of request, referred to subsequently as a “station request,” the client application specifies

which station the data is to come from. In the second kind of request, a “spatial request,” the client

application specifies a geographical region using a latitude/longitude box and MetBroker retrieves all

the relevant data from any stations within the box, regardless of which database the data is stored in.

These two kinds of requests are demonstrated by example applications in the remainder of this chapter.

1.4.1 Single station

1.4.1.1 Metadata and requests

Figure 1-4 shows a MetBroker-based weather data retrieval applet being run under two browsers, an

English version of Netscape and a Japanese version of Internet Explorer, to illustrate the kind of metadata

available from MetBroker and the parts of a data request. A user first selects a database and in some

cases a region within that database. The applet updates the list of stations as each database and region

selection is made, using metadata requests to MetBroker. A number of weather databases operate on a

user-pays basis, or limit access to authorised users only. The username and password field on the right

hand side of Figure 1-4 is enabled for those databases that require usernames and/or passwords.

When the user selects a station, the applet shows (upper-right) the period of operation for the selected

station. The term “present” indicates that this station is still recording data. The table in the lower half of

the applet shows the data available from the selected station. Small squares on the table indicate which

elements are available from the station and at which temporal resolution (e.g. hourly or daily). The

example in the figure shows that hourly and daily air temperature, rainfall, and wind are available from

the station. In many databases there is considerable variation among stations in the meteorological

elements measured and the temporal resolution of measurements.

11

The user selects the meteorological elements that they require by checking boxes on the left-hand side

of the table and selects the output resolution they require by highlighting a table column. In the figure

daily data is selected.

Table 1-2 shows the weather elements that can be requested through MetBroker. Note that the

requested elements are loosely specified and may be supplied by MetBroker in various ways. For

example, humidity may be represented directly, or through a combination of wet and dry bulb

temperature readings. To give another example, soil temperatures are measured at a variety of depths

and users are probably interested in whatever readings are available. Loosely specifying requests

provides MetBroker with the flexibility to give whatever results are likely to be useful.

DSS do not often use some important meteorological measurements such as vertical profiles of water

vapour and temperature. For this reason MetBroker currently only provides access to surface

meteorological readings. It is also important to note that MetBroker does not attempt to make available

every kind of data recorded in a particular database. It focuses on common elements that are used by

DSS and that are available from many databases.

Agricultural software applications predominantly use daily and hourly weather data. Table 1-3 shows

the temporal resolution categories used to request data from MetBroker and used internally to catalogue

data holdings. Again, the categorisations are deliberately broad.

The checkbox in the lower left of Figure 1-4 indicates whether MetBroker may summarise shorter

resolution data to satisfy a longer resolution request (e.g. summarising hourly values from a database

into daily values required by a client). Note that the client controls whether summarising is permitted.

By summarising data on the broker, the amount that must be transmitted to the client is reduced by an

order of magnitude. MetBroker uses different approaches to summarise different meteorological

elements. For example, hourly temperatures are summarised into daily maximum, minimum, and mean

values, whereas hourly rainfalls are summarised into daily totals.

12

Figure 1-4 Data retrieval applet running in Japanese and English browsers (Laurenson, Kiura,
and Ninomiya, 2000)

13

Table 1-2 Elements that can be requested from MetBroker

Requested Element Returned Values

Air Temperature Daily maximums and minimums, or hourly averages

Rain Total

Wind Speed and/or direction

Solar Radiation Global, net, direct and/or diffuse

Humidity Wet and dry bulb temperatures or humidity readings

Soil Temperature Temperatures at one or more depths

Water Temperature Average

Leaf Wetness A set of one or more values (eg canopy and standard sensors)

Table 1-3 Resolutions that can be requested from MetBroker

Resolution Category

Sub-Hourly (shorter than one hour)

Hourly

Daily

Monthly

14

Station details

Period covered

15

rain air temp. solar rad.

Figure 1-5 Station results

Figure 1-6 Daily maximum and minimum temperatures and rainfall in southern Wakayama
prefecture

16

Figure 1-7 Cell phone access to weather data (Laurenson, Kiura, and Ninomiya, 2000)

17

The user enters the interval for which data is required using the combo boxes labelled “Start” and

“End” then clicks the “Go” button to retrieve the data. The time taken for data to be retrieved depends

on static factors such as the amount of data, the type of host database, and database server; and dynamic

factors such as the load level of the host database, and available bandwidth between the host database

and MetBroker, and between MetBroker and the client application. When data arrives it is displayed in

the “Output” panel as a simple tab-delimited table. It can be copied from this window into, say, a

spreadsheet. Information such as processing time is displayed in the panel labelled “Options.”

The Japanese version of the applet in Figure 1-4 shows the extent of changes from the English version.

The start and end dates use a data component developed at NARC that displays the date elements in an

order that is natural for each language. Component labels and other static text use the standard Java

resource bundle approach for internationalisation (i.e. files of (key, value) pairs for each language). These

resources have been developed for English, Japanese, Korean, and Thai. The standard Java approach is

suitable for static text, but MetBroker also needs to converts the 1300 weather station names of AMeDAS

stations and the names of Japanese prefectures from their internal katakana representation in the database

to a romanised form that users outside Japan, China, or Korea can recognise. Java code to convert phonetic

hiragana and katakana characters to romaji has therefore been developed.

1.4.1.2 Station results

Figure 1-5 shows how MetBroker returns the result of a station query to a client application. The

result encapsulates both data and associated metadata. The figure shows a data set containing rain, air

temperature, and solar radiation sequences. The result metadata includes details of the originating

weather station, information about server processing time, and the resolution of the results (e.g. hourly

or daily).

MetBroker data sequences not only store data, but also indicate data values that are missing or

incomplete, and record how data has been summarised. Incomplete data typically arises when, for

example, hourly data is summarised into daily values. Daily data values for the current day are always

incomplete (because the weather for the remainder of the day is unknown) and missing values can occur

at other times because of equipment failures, periodic maintenance, or data transmission problems. By

representing the degree of completeness for each data item, MetBroker lets applications decide how to

use incomplete data.

18

1.4.2 Spatial access

Spatial requests are illustrated by the applet in Figure 1-6 (Laurenson et al., 2001), which retrieves

and displays daily maximum and minimum temperatures and rainfall over a region. Figure 1-6 shows

the southern part of Wakayama prefecture in Japan. This area was chosen because it is monitored by

stations from two of the databases in Table 1-1 – the MAFF database of AMeDAS data and the

Wakayama prefectural rainfall database. Stations displaying a temperature maximum (red) and

minimum (blue) are AMeDAS stations, but stations displaying rainfall alone may be from either of the

two databases. MetBroker lets the applet treat these two separate databases as a larger “super database.”

Utilising the two databases greatly improves the spatial coverage for applications such as interpolation

(see later). The applet’s map background is dynamically retrieved from an Web-based map provider

(Vicinity Corporation, 2001) each time the map is zoomed, panned or resized.

The applet retrieves the selected month’s data from all stations in the region by sending a single

spatial request to MetBroker. This request is similar to the station request but describes the area of

interest with a latitude and longitude “box” rather than specifying a database and station. MetBroker

assembles relevant data from all stations within the query box and returns the results in a SpatialResult

object. Spatial queries clearly illustrate the advantages of merging data from different organisations’

databases.

1.4.3 Data Access Servlet

Some browsers are not capable of running applets. To address this we have developed a Java servlet

that lets any browser access weather data. The interface is not as sophisticated as the applet’s, but its

simplicity means that it can be accessed via Internet-enabled cell phones, such as those using the NTT

Mobile Communications Network, Inc. (NTT DoCoMo) i-mode (Figure 1-7) (Otuka and Laurenson,

2001). This opens the way for deploying models that farmers can easily access in the field, provided the

model’s input requirements are not too demanding.

19

1.5 Summary

The example applications illustrated in this chapter show some of the ways that meteorological data

can be used to support agricultural decision-making and how MetBroker allows data from 12 different

weather databases to be seamlessly incorporated into applications. Each application can be run against

any of the databases, which is unprecedented functionality. Linking new databases is easy, and existing

MetBroker applications can immediately use the newly linked database.

The example applications illustrate the kinds of data and metadata available from MetBroker and

show how applications can access data through station queries, and spatial queries, and can spatially

interpolate temperatures. MetBroker’s adoption by other developers shows that it has successfully

addressed the barriers to uptake listed in previous chapters.

MetBroker is fully internationalised, and the language resources can readily be used by other weather-

based applications.

The applications described in this chapter are available on the Web at:

http://www.agmodel.net/MetBroker/MetBroker.html

20

http://www.agmodel.net/MetBroker/MetBroker.html

2 MetBroker – Internal Implementation

2.1 Introduction

The purpose of this chapter is to describe how MetBroker works, and how well it works. We examine

the classes used to communicate with MetBroker, to show how data is requested and returned.

Programmers using MetBroker need to understand these classes in order to use the system. MetBroker’s

internal design is described; because it provides a pattern on which other brokers can be based. The

classes that make up MetBroker, their methods and method parameters are described in detail in Web-

based documentation generated from source code comments. However, it is also useful to have an

overview of the system’s operation and the relationships among the principal classes.

2.2 Design

In designing and developing MetBroker we needed to fulfil the requirements identified in Chapter 3

for the distributed computing framework such as simplicity, security, accuracy, reliability, and adequate

performance. We also needed to provide the kind of functionality described in Chapter 4 in terms of data

and metadata access. In addition we sought to:

• Maximise the accessibility of MetBroker for client applications

• Minimise the amount of code required by client applications (to facilitate applet downloading)

• Minimise the amount of work involved in adding a new database

• Make it easy for developers to make MetBroker client applications, and minimise the impact of any

changes to the client application interface

• Create code that we could reuse in other systems, particularly other brokers

• Handle missing data carefully and provide metadata associated with measurements such as

measurement heights

• Ensure that client applications were aware of any summarising or interpolation of data by MetBroker

MetBroker’s innovative design largely achieves these objectives.

21

2.2.1 Unified Modeling Language and Object-Oriented Design

To describe how MetBroker is implemented we follow Hutchings (1998) and use Unified Modeling

Language (UML) (Rumbaugh et al., 1998). UML represents a convergence of three object modeling

technologies and has become a standard way of representing object-oriented systems. UML uses 14

kinds of diagrams representing different static and dynamic aspects of a system. We will primarily use

only one kind of diagram, UML class diagrams. A brief guide to UML class diagrams is provided in

Figure 2-1 and more detail is available in references such as Eriksson (1998) or Object Management

Group Inc. (2000).

For those unfamiliar with Object-Oriented Analysis and Design (OOAD) some brief explanation is in

order. The objective of OOAD is to identify software classes that neatly encapsulate particular data and

areas of responsibility and to identify the relationships among these classes. These relationships are

typically services that one class performs for another. A powerful feature of OOAD is the idea of

inheritance, which can be illustrated by an agricultural example (Figure 2-2). If we wanted to create

objects to represent agricultural chemicals then we would first consider common attributes and

behaviour of all agrichemical objects. Attributes might include a trade name and behaviour might

include being able to list their active ingredients. These attributes (data) and behaviour (methods) would

be assigned to a “parent” class, maybe called Agrichemical. We could then consider differences between

fertilisers and pesticides or herbicides – perhaps we always want to assign a “release rate” property to a

class called Fertiliser and want to have a general class for pesticides and herbicides called Toxin that

maintains a list of susceptible and resistant organisms. If we declare that Fertiliser and Toxin are

subclasses of Agrichemical (i.e. Agrichemical is their parent class), then they will automatically include

Agrichemical’s properties and methods – the trade name property and the ability to list the proportion of

each active ingredient. In this way we build a hierarchy of classes, where higher classes are more

general and abstract, and lower classes deal with differences and specifics. This mechanism is similar to

that by which species taxonomies are created and it is a powerful organising approach for managing

complexity.

22

2.2.2 Overview

Figure 2-3 shows MetBroker’s basic internal structure as a UML class diagram. MetBroker’s classes

and interfaces are grouped according to their function and generality. These groups are called packages

and are represented by tabbed folders in UML. The package names follow the Java convention of using

the organisation’s domain name in reverse. We have registered the domain name agmodel.net for use

with the distributed computing framework, so all the package names begin with net.agmodel. This is

omitted in the following discussion for brevity.

The left-most package, metBean, contains a set of visual development JavaBeans that make it easy

to develop MetBroker-linked DSS. The weatherData package in the centre contains the classes that

these JavaBeans, servlets, and other client applications use to communicate with MetBroker. The

interface MetBroker in this package lists the services that MetBroker provides to client applications.

The metBroker package holds the internal classes central to MetBroker’s operation. The

metDriver package holds the classes used to access different databases. These classes are similar to

printer drivers in their role and henceforth we will refer to them as drivers.

Packages help to hide some of the complexity of MetBroker. For example, client applications do not

need to use or know about classes in the metBroker or metDriver packages.

The WrapperServlet and MetBrokerHttp classes together provide a means of accessing

MetBroker that avoids problems with RMI and firewalls. They are described in more detail later in this

chapter.

2.2.3 WeatherData package – data handling classes

The weatherData package and supporting general packages such as physical and utility

(not shown in Figure 2-3 for clarity) hold the classes used by client applications to access MetBroker.

Objects that are instances of these classes are used for data requests, results, and metadata.

2.2.3.1 Data requests

Figure 2-4 shows the structure of requests sent from client applications to MetBroker.

StationMetRequests identify a single station using an identifier assigned to the database by

MetBroker and a database-specific station identifier. SpatialMetRequests use classes

23

implementing the GeographicalArea interface such as GeographicalBox to specify the area

for which data is required. The abstract class MetRequest represents common components of the two

requests such as the list of elements required, the data resolution required (e.g. hourly or daily), and the

time interval for which data is required. The classes MetElement and MetDuration are used to

specify the required elements and data resolution respectively. They implement two sets of type-safe,

enumerable constants following the pattern described by Armstrong (1997), with additional support for

serialization (used by RMI to transfer data) and multilingual operation. This approach prevents client

applications from requesting nonexistent weather elements or data durations.

2.2.3.2 Results

Figure 2-5 shows the structure of results returned from MetBroker to client applications. A station

query returns a StationDataSetImpl object that contains the relevant data from a single station.

The data is stored in classes such as RainImpl and WindImpl, each of which holds one or more time

series of data related to a particular meteorological element. A spatial query returns a

SpatialMetSetImpl object, which is a container for one or more StationDataSetImpls.

2.2.3.3 Sequences

Sequences are the containers that MetBroker uses to return time series of related data. Each sequence

implements a weather-element specific interface, e.g. RainImpl implements the Rain interface.

Sequences may contain several related time series and there may be several different implementations of

a given interface. Sequences explicitly represent missing or incomplete data and record the fact that they

have been summarised to longer time resolutions or otherwise manipulated. Data within the series is

stored using pluggable stores that allow different storage mechanisms to be used for different kinds of

data (see later in this chapter).

2.2.3.3.1 Interfaces

Each meteorological element has quite different properties and these differences led us to define a

separate interface for each element. Each interface defines allowable operations on sequences containing

an element. For example, the SoilTemperature interface assumes that soil temperatures may be

24

measured at several depths and the SolarRadiation interface allows for various kinds of solar

radiation. Measurements, like wind speed and wind direction, are combined into a single sequence if

they relate to the same meteorological element (wind) and could sensibly be used together (e.g. to

produce a wind rose). Figure 2-6 shows the hierarchy of interfaces representing different meteorological

elements. Although the methods in the different interfaces look similar, they sometime take additional

parameters (e.g. the getAverage method of SoilTemperature takes an integer parameter

representing which depth is being requested). The use of separate interfaces makes it easy to handle

metadata associated with each element. For example, the SoilTemperature interface lets an

application find out the depths at which measurements were made.

2.2.3.3.2 Implementations

Figure 2-7 shows the details of the wind sequence as an example of how the interfaces are

implemented. Some weather stations record wind speed and direction, and some simply record wind

speed (or wind run). If you ask MetBroker for wind data from a station, the resulting StationDataSet will

contain a WindImpl object, which will in turn contain both speed and direction if available. This

sequence can be retrieved from the StationDataSet and methods such as getAverageSpeed

used to extract the data. WindImpl holds the speed and/or direction values in classes implementing the

Store interface, each of which manage a single time series. The classes in the upper half of the figure

and the stores on the right hand side are general classes for handling time series data that could be used

in other brokers (e.g. for price information).

Several different classes may implement the same interface. For example, some databases store daily

maximum and minimum temperatures, others also store daily mean temperature, and others store

average air temperatures measured hourly or more frequently. To accommodate this variety, the

AirTemperature interface is implemented by three classes: AirTempMaxMinImpl,

AirTempMaxMinMeanImpl, and AirTempSingle (Figure 2-8). Each implementation holds air

temperature data recorded in a different way, but all three support the method getMinimum defined by

the interface AirTemperature. A client application can request a daily minimum temperature from

an AirTemperature-implementing sequence sent by MetBroker without needing to know how the

database stores air temperatures. The interface lets applications ignore the detail of the implementation

25

class. Similarly, an application needing relative humidity readings does not need to care whether the

data set contains relative humidity readings or wet and dry bulb temperatures – both types of sequences

support the Humidity interface. This approach greatly simplifies that task of the client application, yet

provides access to the detail if it is required.

2.2.3.3.3 Missing values and partial data

The result of a method call such as getAverage may be composed of data from a number of input

records and may include periods where data is missing. The fact that some or all of the data for the

requested period is missing needs to be conveyed to the calling application. For this reason, methods

such as getAverage return both the data and associated metadata in a class named

JigsawQuantity (because like a jigsaw puzzle there can be pieces missing). The metadata includes

an estimate of the proportion of required data that was present, and whether the data value has been

interpolated within MetBroker (this is not yet used).

26

Figure 2-1 UML class diagrams

27

Figure 2-2 Simple example of a class hierarchy

28

29

Figure 2-3 Overview of MetBroker's internal structure

Figure 2-4 Data requests

30

Figure 2-5 Structure of station results

31

Figure 2-6 MetSequence interfaces

32

Figure 2-7 WindImpl classes and their relationships

33

Figure 2-8 Various implementations of the AirTemperature interface

34

Figure 2-9 MetBroker’s metadata storage

35

2.2.3.3.4 Summarising data

MetBroker can automatically summarise data from shorter resolutions (e.g. hourly) to longer

resolutions (e.g. daily) to fulfil client requests. Although this is useful for client applications, it is

prudent to record the fact that this kind of manipulation has taken place. MetBroker records the

sequence of summarising operations using a SummaryHistory (Figure 2-7), where each

SummaryHistoryElement represents one summary level of summarisation. For example, a

monthly average of the daily maximums of hourly temperatures would be represented by a stack of three

SummaryHistoryElements as follows:

 Resolution: Result of:

 Monthly Average

 Daily Maximum

 Hourly None

2.2.3.3.5 Pluggable stores

The class SynchronousStoreImpl in Figure 2-7 and Figure 2-8 also deserves mention. Stores

hold a single time series of data. At present SynchronousStoreImpl, which holds data in an array

of 4 byte real numbers, is the only store available. However, sporadic elements such as rainfall can be

stored in more compact forms than simple arrays. Rather than transmitting an array filled mainly with

zeros from MetBroker to the client, it makes sense to store rainfall using some kind of run length

encoding (e.g. from 1 January 3 am to 15 January 7 pm the rainfall was zero). The use of pluggable

stores means that different sequences can potentially use different kinds of stores.

2.2.4 MetBroker package – metadata and connection management

The metBroker package is the “Central Exchange” of the system. It is responsible for:

• Holding metadata about databases and stations and providing it to client applications

• Logging clients into databases where necessary and maintaining their connections for the

duration of their session

Identifying which databases need to be queried for spatial requests

36

2.2.4.1 Metadata storage

Figure 2-9 shows the classes used to store details about databases and weather station records. The

main classes lie down the left hand side of the figure. A single MetBrokerImpl object receives

requests from clients via the MetBroker interface. It holds a MetSourceImpl object for each

weather database. Each MetSourceImpl object holds details about the range of temporal resolutions

available from the database (e.g. hourly and daily), the period for which data is available (e.g. from 1

January 1976 through to the present), the area of the globe that the database covers (as a

latitude/longitude box), and how long it takes for data to appear in the database after it is recorded

(“timeliness”). The database name is stored in one or more languages in a MultilingualString

object.

Each MetSourceImpl contains a list of ServerStationImpl objects, one for each weather

station in the database. Each ServerStationImpl object stores the weather station’s identifier

within the database, its name in one or more languages, its location in terms of latitude and longitude, its

period of operation, and the shortest resolution data available. The ServerStationImpl has a

MetCatalogSection object for each meteorological element. Each MetCatalogSection has a

MetCatalogCard for each resolution at which the element is recorded (sub-hourly, hourly, daily, and

monthly). Each MetCatalogCard maintains a list of MetCatalogPeriods for which the specified

element is available or missing at a particular resolution. The basic assumption of this list is that data is

available for the entire period of operation of the station. If a data query is unsuccessful, the absence of

data is recorded. This means that MetBroker gradually learns about data gaps and does not query

repeatedly for missing data, improving overall performance and decreasing the load on database servers.

Some databases group stations into regions. Regions allow the user to more easily locate a station by

subdividing the list of stations into manageable chunks. For example, in the case of the AMeDAS

database, the 1500 stations are grouped by prefecture. If a station has any regions, they are defined in a

list of RegionImpl objects.

2.2.4.2 Object Database

When MetBroker was first implemented, it held all the metadata in memory. This meant that each

time it was restarted it needed to rebuild the set of station objects by either querying the remote

37

databases or using details stored locally in a relational database. This process was time consuming and

placed considerable load on the host databases. It also meant that the entire set of objects was held in

memory all the time. Although this provided good performance, any details “learnt” about a station’s

data were lost if the system needed to be restarted. In light of this, we changed MetBroker so that station

details were stored in a database.

An OODB implemented using ObjectStore PSEPro 6.0 for Java stores instances of

ServerStationImpl, RegionImpl, and the objects they contain. PSEPro is a single-user version

of the multi-user OODB ObjectStore. PSEPro requires that the classes of objects stored in it, and any

classes they refer to, be run through a post-processor that inserts additional code necessary to implement

persistence. To facilitate this we developed separate persistent versions of utility classes such as Place,

Period, and Duration – the names of the persistent versions are prefixed with a “P.”

Storing station details in some kind of database has two principal advantages. It means that MetBroker

can be quickly restarted when required, taking only a few seconds to become operational compared with

perhaps 30 minutes for the previous version. It also means that only stations involved in the current

query need to be read from disk and “materialised” in memory. This is a little slower, but reduces the

memory requirements considerably. In MetBroker, retrieving the entire details of a randomly selected

weather station from disk takes about 0.1 seconds. We have not implemented MetBroker using a

relational database for comparison but experience suggests that a relational implementation would have

difficulty matching this performance.

Being a single-user database, PSEPro has some restrictions. In particular, only one thread at a time

can update the database, though multiple threads can read from the database simultaneously. Ensuring

that these rules are abided by in a multi-user server requires some care in synchronising access and

accounts for some of the complexity in the next section.

2.2.4.3 Connections

MetBroker’s core uses an OODB access approach illustrated in a demonstration application provided

with PSEPro (Supple, 2001). Each copy of a client application establishing an initial connection with

MetBrokerImpl is assigned a session identifier, which is used in subsequent operations. This

identifier acts as a key to the application’s own MetBrokerContext object, which holds the user’s

38

connections to remote databases and allows multiple users to simultaneously read metadata from

PSEPro. Figure 2-10 shows how each MetBrokerContext holds links to both database connections

(represented by the MetAccessMechanism interface) and to the metadata held in MetSourceImpl.

In addition to maintaining metadata, MetSourceImpl must create database drivers when clients

require them. It does this by utilising Java’s dynamic class loading to create an instance of the driver

class. Figure 2-11 shows the sequence of method calls and object creation involved in a typical

MetBroker session using a UML sequence diagram. The vertical axis in the diagram represents time.

Each object is represented by a rectangle together with a vertical dashed line called the object’s

“lifeline.” Some objects are temporary; their object rectangle appears part way down the diagram and a

large X at the end of their lifeline represents their destruction. Horizontal arrows between the lifelines

represent method calls from one object to another. For clarity, method returns are often omitted.

A client application establishes a connection to MetBroker (1), at which time a

MetBrokerContext is created. A request for a list of databases (2) is fulfilled from information held

in memory. A request for a list of stations belonging to a particular database (3) requires a query of

metadata stored in the OODB and the creation of a MetSourceContext object for this user/database

combination. A request for station data (4) leads MetSourceImpl to instantiate a driver object

(implementing MetAccessMechanism) for the database. As several clients may simultaneously

access the same database under their own usernames, each client has their own copy of the driver.

JDBC-based drivers establish a connection to the database and hold it open in case it is needed for other

queries. A call to the MetAccessMechanism interface method queryForStation retrieves the

actual weather data. Lastly (5) the client disconnects from MetBroker, which then disposes the

corresponding context and driver objects.

39

Figure 2-10 Classes involved in managing user connections and metadata access

40

41

Figure 2-11 Method calls and object creation involved in several common MetBroker tasks

Figure 2-12 MetBroker driver classes as of April 2001

42

2.2.5 MetDriver package – database connectivity

Each database is accessed with a driver that handles its particular format and structure. These drivers

all implement the MetAccessMechanism interface. Figure 2-12 shows MetAccessMechanism

interface and its parent interfaces on the left of the diagram, and on the right hand side the hierarchy of

classes used to implement current drivers. General classes (like net.agmodel.dbUtility.JDBC)

implement functions common to all databases and sub-classes deal with the vagaries of each database.

The classes in a sweeping curve from FAWNDB through to PAWS are drivers associated with particular

databases. Each driver links to a corresponding instance of MetSourceImpl via the interface

MetSourceForDrivers. Note that there is some apparent mismatch between the utility JDBC

classes in the figure and the type of database. This occurs because, for example, the GAEMN driver uses

CGI to access the actual weather data but reads station details from a local PostgreSQL database. It is

convenient for the driver to use the functionality already present in the JDBCPostgres class to access

the station details.

For a database to be accessible through MetBroker it must fulfil several requirements. Each station in

the database must have an identifier that is unique within that database. MetBroker must be able to

connect to the database without firewalls intervening. MetBroker must have access to station details,

such as their location and period of operation. With password protected databases this means that

MetBroker typically needs a database account, though the account may not have access to the data itself.

Someone with appropriate programming skills and knowledge of the structure of the database must have

enough access to the database to write the driver class and test it.

The need for a separation between a driver and the corresponding MetSourceImpl is not

immediately obvious, but the two have quite different roles and lifetimes. The MetSourceImpl‘s two

primary roles are storing metadata about its database and creating driver instances as required. The

driver’s two primary roles are to retrieve weather data and (infrequently) supply metadata to the

MetSourceImpl. Instances of the driver classes only exist for the duration of a user session and there

may be multiple copies in existence at any one time – one for each active database user. The

MetSourceImpl is persistent and there is only ever a single MetSourceImpl instance for each

database. The separation between the two means that the driver classes can potentially be derived from a

43

wide range of utility data access classes such as JDBC. This gives the flexibility necessary to access a

wide range of databases. The job of maintaining database metadata is similar enough for all databases

that it can be handled by a single class, MetSourceImpl.

2.2.6 MetBean package

Developers can use JavaBeans in the metBean package to quickly create MetBroker-enabled DSS.

The beans encapsulate common tasks such as selecting a station using database, region, and station

selection controls, or choosing an interval for which data is required. The beans appear in the applet

screen shots in the preceding chapter and are summarised in Table 2-1.

 Using the beans provides all the usual benefits of shared code libraries – they speed development and

cut down on the maintenance required if the MetBroker interface changes. These beans can be easily

linked so that, for example, the user code and password fields in are only enabled for databases that

require these inputs. They hide some of the complexities associated with remote connections, such as

the use of multithreading to mask latency.

 Figure 2-13 shows the beans, and the interfaces and events linking them together. We use the

alternative UML “lollypop” notation for the interfaces in this diagram for clarity. The beans use custom

events to link to one another. As an example of how this mechanism works, the MetSourceBean

sends events to other beans when the user selects a new database. To be notified of these events, beans

must implement the interface MetSourceListener and must register their interest by calling

MetSourceBean’s addMetSourceListener method. The MetSourceEvent method sent by

the MetSourceBean to the listening beans contains details about the newly selected database. In

response to this event beans may request further information by querying MetBroker directly, for

example the RegionBean would request a list of regions in the database and then display and

“announce” the first region in the list by broadcasting a RegionEvent to its listeners.

44

Table 2-1 MetBroker Beans

Bean class Picture Function

MetBroker
 (not visible)

Manage link to

MetBroker

MetSource

Select database

from list

MetRegion

Select database

region

MetStation

Select station

within region

StationDates

Show period of

operation of

station

MetLogin

Log user into

database if

required.

TimeZone

Select query and

result time zone

Interval

Select request

interval

ElementAnd

Resolution

Show data

elements available

from station and

their resolution.

Allow selection of

elements to

retrieve and their

resolution

StationRequest

Get station data

SpatialRequest

Get spatial data

45

Figure 2-13 MetBroker beans and the events linking them.

46

2.2.7 HTTP Wrapper Servlet

Corporate firewalls typically only allow traffic on well-known ports such as port 80 for HTTP,

blocking the ports used for RMI communications. We found that many potential MetBroker users could

not run RMI-based applets because of firewalls. Although firewalls can be configured to allow RMI

communication, firewall administrators are often reluctant to permit wider access.

McPherson (1999) suggested an approach where RMI communications are “wrapped” in HTTP with

the help of a Java servlet so that communication takes place over HTTP. The approach introduces an

additional processing layer, but avoids firewall problems. The server code does not require any changes

and the changes to applets are easy to implement.

We developed a wrapper servlet (Figure 2-3) and found that it solved the firewall problem with

minimal performance impact. We have adapted the beans so that they will use RMI if available, but

switch to HTTP if RMI is blocked. Applets and beans use the MetBrokerHTTP class to link to the

wrapper servlet – its interface is almost identical to the MetBroker RMI interface.

47

2.3 Deployment

Being Java-based, MetBroker can be run on a variety of computers without recompilation. Its

processor, memory, and disk requirements are not demanding. In order to act as a MetBroker host, a

computer must be permanently connected to the Internet so that it can be contacted by client

applications and quickly retrieve data from Internet-accessible databases. Any firewalls around the host

machine must permit MetBroker access to remote databases, and allow RMI connections from client

computers, or at least from the Web server running the HTTP wrapper servlet. High bandwidth Internet

connections between the host machine and the database(s) and between the host machine and clients

assist performance considerably.

2.3.1 Memory

On a Linux server running IBM JRE 1.3 MetBroker occupies about 22 MB of RAM once all its

drivers and their associated classes have been loaded. The RMI registry, which does not need to be run

on the same machine but usually is, occupies a further 8 MB. On a Windows NT machine running Sun

JRE 1.3 MetBroker only occupies 5.4 MB and the RMI Registry occupies 3.5 MB. The difference in

memory requirements reflects different implementations of Java on the two computers.

2.3.2 Disk requirements

The hundreds of Java classes that make up MetBroker are stored in several compressed Java Archive

(jar) files that currently total 3.8 MB. Of this, the jar files for PSEPro occupy 1.1 MB and third party

JDBC drivers occupy 2.4 MB. The remaining 0.3 MB is composed of two jar files, one containing

MetBroker internal code (170 KB) and one containing classes used to communicate between MetBroker

and clients (150 KB). Clients only need to download this last 150 KB jar file in order to use MetBroker.

Figure 2-14 shows the relative proportions of space occupied by each kind of jar file and it is clear that

client applications only require a small fraction of the classes required by MetBroker. Compared with

direct access of the same databases using JDBC, MetBroker’s design has greatly reduced client

download requirements.

48

The metadata stored by MetBroker in PSEPro datafiles occupies 6.8 MB, or roughly 4 KB per station

(only a small subset of the CliDB stations are available through MetBroker at present because of

funding constraints). This might be expected to grow somewhat as MetBroker learns more about gaps in

the stations’ data holdings.

Overall therefore, MetBroker requires about 10 MB of disk space on the host computer with the

amount depending on the number of stations represented and on the range of elements and resolutions

they record.

2.3.3 PSEPro

As was discussed earlier, the current implementation of MetBroker uses an OODB called PSEPro for

Java. Development licences for PSEPro cost several hundred U.S. dollars, but deployment licences are

much more expensive. This argues against having many copies of MetBroker running around the world.

The University of Florida has a licence for ObjectStore that allows it to deploy systems such as

MetBroker, and we have run a copy of MetBroker there. Possession of an existing licence for

ObjectStore may become a significant factor in choosing if and where to locate additional copies of

MetBroker. Alternatively it would be possible to develop a version of MetBroker that either uses a

relational database or does not use any form of persistence – we discuss this in the final chapter.

49

MetBroker Disk Space

JDBC
drivers

PSEPro

Internal
Client

Figure 2-14 Disk requirements of MetBroker code

50

2.4 Summary

This chapter has briefly described the internal structure and operation of MetBroker and reviewed its

performance. MetBroker is a relatively complex system, but much of this complexity is hidden by two

key interfaces – one for client applications and one for writers of database drivers. MetBroker confirms

the value of separating interfaces and implementations as a way of handling complexity. The

abstraction layers help, for example to match the requirements of models to the diverse outputs of

various databases. Focusing on the meteorological data required by crop models, rather than attempting

to make the entire contents of all the databases available, has helped identify common elements in the

wide range of meteorological elements measured in different databases.

MetBroker’s weather data classes handle the requirements of each meteorological element and

provide supporting metadata. The standard interface for each element helps to accommodate variation

in the way elements are recorded at different sites. Support for missing or partial data and summary

records ensure that client applications can evaluate the usefulness of the data they receive.

By holding extensive metadata about each database, MetBroker can provide clients with a catalogue

of available stations and weather elements without further database queries. These metadata also assist

in identifying which stations should be queried in response to spatial requests. The use of an OODB to

store the metadata provides rapid responses and reduces broker start up time and memory requirements.

The driver architecture makes it easy to add new databases to MetBroker. The wide range of

databases already used are evidence of the flexibility of the approach. The limited access for drivers to

MetBroker’s internal functions helps simplify driver writing and helps prevent errant drivers from

adversely affecting the broker’s operation.

The amount of code that client applications need to download is less than most JDBC drivers, while

providing access to a wider range of databases. This suggests that we have made good progress towards

our aim of minimising the amount of code required by client applications.

The metBean package helps developers to quickly create compatible Java-based DSS and reduces

maintenance by creating a single set of code for common operations.

51

References

Armstrong, E. (1997) Create enumerated constants in Java. JavaWorld,

URL:http://www.javaworld.com/javaworld/jw-07-1997/jw-07-enumerated.html.

Eriksson, H.-E. and M. Penker (1998) UML Toolkit. John Wiley & Sons, New York, NY, USA, pp.

397.

Hutchings, N. J. (1998) A modelling framework for grazing livestock farming, EUNITA Working

Group H*, URL:http://www.efita.dk/eunita/h/webreport1.html.

Japan MAFF (1999) Amedas data, Japan Ministry of Agriculture, Forestry and Fisheries.

Laurenson, M. (2002) A study on the development of a distributed computing framework for

agricultural decision support systems. PhD thesis, Graduate School of Life and Environmental Sciences,

University of Tsukuba, Tsukuba.

Laurenson, M., A. Otuka and S. Ninomiya (2001) Developing agricultural models using MetBroker

mediation software. Journal of Agricultural Meteorology 58(1).

Laurenson, M. R., T. Kiura and S. Ninomiya (2000) Providing agricultural models with mediated

access to heterogeneous weather databases. Trans. American Society of Agricultural

Engineering:(submitted).

McPherson, S. (1999) Java Servlets and Serialization with RMI, Sun Microsystems, Inc.,

URL:http://developer.java.sun.com/developer/technicalArticles/RMI/rmi/.

Object Management Group Inc. (2000) UML Resource Page, OMG,, URL:http://www.omg.org/uml/.

Otuka, A. and M. Laurenson (2001) Access to MetBroker by an Internet-enabled cellular phone (in

Japanese). Agroinformatics 3:54-57.

52

Penney, A. C. (1997) Climate database (CLIDB) user's manual, 4, The National Institute of Water

and Atmospheric Research, Wellington, New Zealand.

Rumbaugh, J., I. Jacobson and G. Booch (1998) Unified Modeling Language Reference Manual, The

Addison-Wesley Object Technology Series. Addison-Wesley, pp. 550.

Supple, E. (2001) Remote Method Interface using multiple sessions. In Personal Storage Edition PSE

Pro for Java Release 6.0 Service Pack 5 Bookshelf, ed. I. Object Design, Object Design, Inc.

Vicinity Corporation (2001) MapBlast!, URL:http://www.mapblast.com.

53

	MetBroker Programmers Guide
	Contents
	MetBroker ? Introduction
	Introduction
	Why Focus on Weather Data?
	MetBroker Overview
	Basic structure

	Applications Illustrating Data Access
	Single station
	Metadata and requests
	Station results

	Spatial access
	Data Access Servlet

	Summary

	MetBroker ? Internal Implementation
	Introduction
	Design
	Unified Modeling Language and Object-Oriented Design
	Overview
	WeatherData package ? data handling classes
	Data requests
	Results
	Sequences
	Interfaces
	Implementations
	Missing values and partial data
	Summarising data
	Pluggable stores

	MetBroker package ? metadata and connection management
	Metadata storage
	Object Database
	Connections

	MetDriver package ? database connectivity
	MetBean package
	HTTP Wrapper Servlet

	Deployment
	Memory
	Disk requirements
	PSEPro

	Summary

	References

