Guide to Writing a MetBroker Driver
The job of a MetBroker driver is to handle connections to a particular database, retrieving data as requested, and providing lists of the stations in the database as requested.

Driver Requirements
1. A MetBroker driver must be in the package net.agmodel.metDriver
2. MetBroker drivers must implement the net.agmodel.metDriver.MetAccessMechanism interface.
MetAccessMechanism extends the general interface net.agmodel.dbUtility.DBAccessMechanism.
Both interfaces are documented in API details for database driver writers (javadoc) on the MetBroker home page (http://www.agmodel.net/MetBroker).
3. The driver must have a constructor that takes a single MetSourceForDrivers parameter. The interface net.agmodel.metDriver.MetSourceForDrivers defines all the MetBroker functions that the driver can access.

4. MetBroker drivers should not contain any usernames or passwords

5. MetBroker drivers should only have read access to the database

6. The methods disconnectFromData and disconnectFromMetadata should release any resources (such as JDBC database connections) allocated by their corresponding connect methods.

7. The driver must not change the default TimeZone from the MetBroker standard GMT. (ie don’t call Locale.setDefaultTimeZone()). In fact, the driver should not change any aspects of the default Locale.
Driver Lifetimes and Method Call Sequence

MetBroker creates an instance of the driver in two situations. The first is when MetBroker needs to get a list of stations and regions for the database – in the current version of MetBroker this only happens once every few months. The second is when a user session needs to access the database. MetBroker creates a driver instance for that user session, which is disposed when the user disconnects.

If several users access the same database at around the same time, several instances of a database driver may exist at the same time.

The lifetime of a driver instance is usually only a few minutes.

MetBroker maintains a single MetSourceImpl object for each database which stores the database metadata in a persistent way, and responds to metadata queries from users or MetBroker. These MetSourceImpl objects generate driver instances as required, using dynamic class loading (loading classes by name).

This is the order in which MetBroker will call the driver.

(One time only)

<create instance>

connectForMetaData()

updateRegionList()

updateStationList()

disconnectFromMetaData()

<dispose>

(Many times)

<create instance>

connectForData()

queryForStation()

queryForStation()

queryForStation()

…

disconnectFromData()

<dispose>

Method Notes
connectFor…disconnectFrom…

MetBroker asks the driver to connect to the database in two ways; for data or for metadata. In many cases, metadata is stored on a different database to the weather data itself (eg when the weather data is stored in a web page and there isn’t a convenient list of station details provided). Typically MetBroker uses its own username and password to retrieve metadata from a database. These are stored in a separate configuration file which is not distributed as part of the source code. MetBroker passes the usernames and passwords to the driver instances as required, so there is no need to store them in the source code (which is distributed as open source).

updateRegionList()

MetBroker can group the stations of a database into regions (eg prefectures in the case of the AMeDAS database). If you want MetBroker to do this, then updateRegionList must provide MetBroker with the list of regions. Here is the relevant code from the AMeDAS driver
MultilingualString prefName=new MultilingualString(Kana2Romaji.toRomaji(kanaString));

prefName.put("ja",kanjiString);

getMetSource().addRegion(prefectureID,prefName);

Each region is identified by a String identifier. The prefectures name is stored in a MultilingualString object which contains both romaji and kanji versions. The driver communicates with its corresponding MetSource using the “callback” reference (MetSourceForDrivers) passed in the driver constructor.

updateStationList()
This method must tell MetBroker about each station in the database. Again using the AMeDAS driver as an example:

if (end.before(recent.getTime()))

 operating=new Period(start,end);

else

 operating=new Period(start,true);

…

…
names=new MultilingualString(romanName);

names.put("ja",kanjiName);

…

getMetSource().addStation(stationID,names,lat,longt,alt,operating,prefectureID);
MetElement[] all={MetElement.AIRTEMPERATURE,MetElement.RAIN,MetElement.WIND};

Duration[] durations={Duration.ONE_HOUR,Duration.ONE_DAY};

… getMetSource().recordMultipleElementStatus(stationID,all,durations,operating,true);
The Period(start,true) option above means that the station is still operating, so no closing date is known. Again, the station name is represented using a MultilingualString object. The call to addStation tells MetBroker basic information about the station, including its name, location, period of operation, and the region to which it belongs (prefectureID). If no regions are defined, regionID should be null.

The recordMultipleElementStatus call records the elements measured by the station, and their resolution. In this case the AMeDAS station measures air temperature, rain, and wind both hourly and daily. There is a similar recordElementStatus call which may be more convenient to use.

updateStationList can perform quite time-consuming queries on the database to establish what data is available, because these queries are executed very infrequently. There is a tradeoff between accuracy and the cost of queries. Data catalogs, where available, are useful.

queryForStation()

This is perhaps the most important method in terms of impact on performance. Its job is to fill an empty result set supplied by MetBroker. Both the result set, and the original query are passed to queryForStation. MetBroker doesn’t modify the query at all, but adjusts the time interval of the result set in the following cases:

· When the query extends beyond the period of operation of the station (in which case MetBroker makes the result interval the intersection of the query and the station operating period).

· When a request for daily data has a different offset to the station daily recording time (eg the request is from midnight, Jan 1 to midnight Jan 31, but the station records daily values at 9am). In this case the result time interval is adjusted to coincide with the daily measurement time (9am Jan 1 to 9am Jan 31).

For this reason, queryForStation should use the result set’s time interval rather than the query time interval.

The following code excerpts show typical steps in a queryForStation method. To simplify, only rainfall handling is included, and we don’t show the database query that extracts the data. This example is adapted from the PrefMetDB driver. The PrefMetDB database contains hourly records.

private static final RAWRESOLUTION= Duration.ONE_HOUR;
//this database contains hourly data

Interval resultInterval=result.getInterval();
//the period we need to get data for
MutableInterval recordInterval=new MutableInterval();

RainImpl rainSequence=null;
while (recordstoprocess)

 recordInterval.set(RAWRESOLUTION,recordTime);
 //the time period covered by this record – one hour ending at recordTime
 if (resultInterval.coincidesWith(recordInterval)) {

 if (request.containsMetElement(MetElement.RAIN)) {

 if (rainSequence==null){
 SummaryHistory rainHistory=new SummaryHistory();

 rainHistory.addHistoryElement(
 new SummaryHistoryElement(RAWRESOLUTION,SummaryKind.TOTAL));

 rainSequence=new RainImpl(resultInterval,rainHistory);
 }
 rainSequence.putRainfallOverInterval(recordInterval,rset.getFloat(raincolumn));

 }
 ….

 }
}//recordstoprocess
getMetSource().processSequence(MetElement.RAIN,rainSequence,request,RAWRESOLUTION,result);
Notes

We test each record to see whether it falls within the interval of interest (resultInterval). This is sometimes necessary if we can’t efficiently select exactly the right set of data with the initial database query. We use a MutableInterval to represent the period of time covered by the record because it is more efficient to change the MutableInterval than repeatedly create immutable Interval objects.

Rainfall data is inserted into a RainImpl sequence. This is only created the first time it is used (lazy initialization).

The second parameter used to make the RainImpl sequence is a SummaryHistory object. The idea of SummaryHistories is to track the summarizing of raw data into the data that the user finally sees. This means that applications can tell, for example, whether daily maximum and minimum values were recorded by a station or derived from 15 minutely temperature readings.

The call to MetBroker to processSequence checks whether the rainSequence is null, and only adds it into the result if it is non-null. This approach keeps the result object smaller, particularly when there is a reasonable likelihood of a data item not being present.
The actual code in PrefMetDB is a little more efficient than this example, but this illustrates the kind of classes and method calls typically used.
Utility classes
The package net.agmodel.dbUtility contains base classes useful for handling JDBC connections to relational databases. Currently Oracle, PostgreSQL, MySQL, Borland Gateway, and Rjj (RMI to Access) connections are supported. In each case you need to include the corresponding JDBC driver from the database manufacturer in your classpath. These classes mainly handle correct formatting of JDBC connection strings and loading of the manufacturers JDBC drivers.
TestHarness
To simplify testing and debugging drivers we have created a small test program that copies the way MetBroker loads and interacts with drivers. This class DriverTestHarness.java is available on the MetBroker web site.

To use DriverTestHarness.java, first create your driver class implementing MetAccessMechanism and following the rules above. Then edit the constants in the upper part of DriverTestHarness.java that specify the name of the driver class, the station to request data from, and the data required. Don’t change anything below this comment:

//---

//Don't change anything from here down:

//---

Notes
You must tell TestHarness the name of the driver class. The name, being a Java class name, is case sensitive.

//your driver class name, without the package net.agmodel.metDriver

static final String driverName="HortPlus";

MetBroker identifies each database with a short string (in lower case). You can choose any string that is not already used for another database.

static final String sourceID="hortplus";

The TestHarness retrieves data from a single station. Specify which station to use with the following constant. Note that this station must be one of those recorded by updateStationList():

static final String stationID="HAV";

Some stations report daily data on a midnight to midnight basis, others use 9am to 9am. If the database has daily data, please indicate which offset is used with the following constant:

// time to use for daily data summaries (in hours from midnight)

static final float dailyoffset=9.0F;

If data is missing for a station, it may because the database hasn’t been updated with the most recent data. The following variable indicates that MetBroker should ignore missing data during the one month prior to today.

// maximum time between database updates

static final Duration timeliness=new Duration(1,DurationUnit.MONTH);

Your driver should be able to handle requests from timezones other than the timezone of the database (for example, a user in Japan requests data from a US database). However, to check that the data provided by your driver is correct it is helpful to request the data and format it with the same timezone as the database. Set the constant tz to the correct timezone for the database. To see a list of valid timezone constants, run the MetBroker demo applet and click on the Options tab:
 static final TimeZone tz=TimeZone.getTimeZone("Pacific/Auckland");

The following code establishes a time interval for which data are requested. Make sure that data is available from the test station over this period!
 static Interval interval;

 static {

 Calendar c=Calendar.getInstance(tz);

 //set the starting time of the interval

 c.clear();

 c.set(Calendar.YEAR,1997);

 c.set(Calendar.MONTH,11); // remember java months start from 0

 c.set(Calendar.DAY_OF_MONTH,31);

 c.set(Calendar.HOUR_OF_DAY,8);

 interval=new Interval(c.getTime(),new Duration(7,DurationUnit.DAY));

 System.out.println("Interval "+interval);

 }

To compile DriverTestHarness use:

javac -classpath .; genericbroker.jar;weatherdata.jar;metbroker.jar DriverTestHarness.java
To run it, use a similar command line

java -classpath .; genericbroker.jar;weatherdata.jar;metbroker.jar DriverTestHarness
The necessary jar files can be downloaded from the MetBroker web site. You may also need to add any JDBC driver you use to the classpath.
